Kernel Learning for Regression via Quantum Annealing Based Spectral Sampling
By: Yasushi Hasegawa, Masayuki Ohzeki
While quantum annealing (QA) has been developed for combinatorial optimization, practical QA devices operate at finite temperature and under noise, and their outputs can be regarded as stochastic samples close to a Gibbs--Boltzmann distribution. In this study, we propose a QA-in-the-loop kernel learning framework that integrates QA not merely as a substitute for Markov-chain Monte Carlo sampling but as a component that directly determines the learned kernel for regression. Based on Bochner's theorem, a shift-invariant kernel is represented as an expectation over a spectral distribution, and random Fourier features (RFF) approximate the kernel by sampling frequencies. We model the spectral distribution with a (multi-layer) restricted Boltzmann machine (RBM), generate discrete RBM samples using QA, and map them to continuous frequencies via a Gaussian--Bernoulli transformation. Using the resulting RFF, we construct a data-adaptive kernel and perform Nadaraya--Watson (NW) regression. Because the RFF approximation based on $\cos(\bmω^{\top}Δ\bm{x})$ can yield small negative values and cancellation across neighbors, the Nadaraya--Watson denominator $\sum_j k_{ij}$ may become close to zero. We therefore employ nonnegative squared-kernel weights $w_{ij}=k(\bm{x}_i,\bm{x}_j)^2$, which also enhances the contrast of kernel weights. The kernel parameters are trained by minimizing the leave-one-out NW mean squared error, and we additionally evaluate local linear regression with the same squared-kernel weights at inference. Experiments on multiple benchmark regression datasets demonstrate a decrease in training loss, accompanied by structural changes in the kernel matrix, and show that the learned kernel tends to improve $R^2$ and RMSE over the baseline Gaussian-kernel NW. Increasing the number of random features at inference further enhances accuracy.
Similar Papers
Quantum-assisted Gaussian process regression using random Fourier features
Computation
Quantum computer speeds up learning from messy data.
Quantum Fourier Transform Based Kernel for Solar Irrandiance Forecasting
Machine Learning (Stat)
Predicts future weather patterns with better accuracy.
Investigation of D-Wave quantum annealing for training Restricted Boltzmann Machines and mitigating catastrophic forgetting
Machine Learning (CS)
Helps computers learn new things without forgetting old ones.