Spatial Context Improves the Integration of Text with Remote Sensing for Mapping Environmental Variables
By: Valerie Zermatten , Chiara Vanalli , Gencer Sumbul and more
Recent developments in natural language processing highlight text as an emerging data source for ecology. Textual resources carry unique information that can be used in complementarity with geospatial data sources, thus providing insights at the local scale into environmental conditions and properties hidden from more traditional data sources. Leveraging textual information in a spatial context presents several challenges. First, the contribution of textual data remains poorly defined in an ecological context, and it is unclear for which tasks it should be incorporated. Unlike ubiquitous satellite imagery or environmental covariates, the availability of textual data is sparse and irregular; its integration with geospatial data is not straightforward. In response to these challenges, this work proposes an attention-based approach that combines aerial imagery and geolocated text within a spatial neighbourhood, i.e. integrating contributions from several nearby observations. Our approach combines vision and text representations with a geolocation encoding, with an attention-based module that dynamically selects spatial neighbours that are useful for predictive tasks.The proposed approach is applied to the EcoWikiRS dataset, which combines high-resolution aerial imagery with sentences extracted from Wikipedia describing local environmental conditions across Switzerland. Our model is evaluated on the task of predicting 103 environmental variables from the SWECO25 data cube. Our approach consistently outperforms single-location or unimodal, i.e. image-only or text-only, baselines. When analysing variables by thematic groups, results show a significant improvement in performance for climatic, edaphic, population and land use/land cover variables, underscoring the benefit of including the spatial context when combining text and image data.
Similar Papers
Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources
CV and Pattern Recognition
Finds disasters in satellite pictures using text.
A multi-view contrastive learning framework for spatial embeddings in risk modelling
Risk Management
Makes house price predictions better using location.
Georeferencing complex relative locality descriptions with large language models
Artificial Intelligence
Maps old nature notes automatically.