Beyond Seen Bounds: Class-Centric Polarization for Single-Domain Generalized Deep Metric Learning
By: Xin Yuan , Meiqi Wan , Wei Liu and more
Single-domain generalized deep metric learning (SDG-DML) faces the dual challenge of both category and domain shifts during testing, limiting real-world applications. Therefore, aiming to learn better generalization ability on both unseen categories and domains is a realistic goal for the SDG-DML task. To deliver the aspiration, existing SDG-DML methods employ the domain expansion-equalization strategy to expand the source data and generate out-of-distribution samples. However, these methods rely on proxy-based expansion, which tends to generate samples clustered near class proxies, failing to simulate the broad and distant domain shifts encountered in practice. To alleviate the problem, we propose CenterPolar, a novel SDG-DML framework that dynamically expands and constrains domain distributions to learn a generalizable DML model for wider target domain distributions. Specifically, \textbf{CenterPolar} contains two collaborative class-centric polarization phases: (1) Class-Centric Centrifugal Expansion ($C^3E$) and (2) Class-Centric Centripetal Constraint ($C^4$). In the first phase, $C^3E$ drives the source domain distribution by shifting the source data away from class centroids using centrifugal expansion to generalize to more unseen domains. In the second phase, to consolidate domain-invariant class information for the generalization ability to unseen categories, $C^4$ pulls all seen and unseen samples toward their class centroids while enforcing inter-class separation via centripetal constraint. Extensive experimental results on widely used CUB-200-2011 Ext., Cars196 Ext., DomainNet, PACS, and Office-Home datasets demonstrate the superiority and effectiveness of our CenterPolar over existing state-of-the-art methods. The code will be released after acceptance.
Similar Papers
C-DGPA: Class-Centric Dual-Alignment Generative Prompt Adaptation
CV and Pattern Recognition
Helps AI understand new pictures without extra training.
Generative Classifier for Domain Generalization
CV and Pattern Recognition
Teaches computers to see better in new places.
Target-Oriented Single Domain Generalization
CV and Pattern Recognition
Helps AI understand new things without seeing them.