SPOT-Face: Forensic Face Identification using Attention Guided Optimal Transport
By: Ravi Shankar Prasad, Dinesh Singh
Person identification in forensic investigations becomes very challenging when common identification means for DNA (i.e., hair strands, soft tissue) are not available. Current methods utilize deep learning methods for face recognition. However, these methods lack effective mechanisms to model cross-domain structural correspondence between two different forensic modalities. In this paper, we introduce a SPOT-Face, a superpixel graph-based framework designed for cross-domain forensic face identification of victims using their skeleton and sketch images. Our unified framework involves constructing a superpixel-based graph from an image and then using different graph neural networks(GNNs) backbones to extract the embeddings of these graphs, while cross-domain correspondence is established through attention-guided optimal transport mechanism. We have evaluated our proposed framework on two publicly available dataset: IIT\_Mandi\_S2F (S2F) and CUFS. Extensive experiments were conducted to evaluate our proposed framework. The experimental results show significant improvement in identification metrics ( i.e., Recall, mAP) over existing graph-based baselines. Furthermore, our framework demonstrates to be highly effective for matching skulls and sketches to faces in forensic investigations.
Similar Papers
Cross-Domain Identity Representation for Skull to Face Matching with Benchmark DataSet
CV and Pattern Recognition
Identifies people from skull pictures.
Cranio-ID: Graph-Based Craniofacial Identification via Automatic Landmark Annotation in 2D Multi-View X-rays
CV and Pattern Recognition
Identifies faces from skull pictures faster and better.
A Novel Unified Approach to Deepfake Detection
CV and Pattern Recognition
Spots fake videos and pictures to keep things real.