TIDI-GS: Floater Suppression in 3D Gaussian Splatting for Enhanced Indoor Scene Fidelity
By: Sooyeun Yang , Cheyul Im , Jee Won Lee and more
3D Gaussian Splatting (3DGS) is a technique to create high-quality, real-time 3D scenes from images. This method often produces visual artifacts known as floaters--nearly transparent, disconnected elements that drift in space away from the actual surface. This geometric inaccuracy undermines the reliability of these models for practical applications, which is critical. To address this issue, we introduce TIDI-GS, a new training framework designed to eliminate these floaters. A key benefit of our approach is that it functions as a lightweight plugin for the standard 3DGS pipeline, requiring no major architectural changes and adding minimal overhead to the training process. The core of our method is a floater pruning algorithm--TIDI--that identifies and removes floaters based on several criteria: their consistency across multiple viewpoints, their spatial relationship to other elements, and an importance score learned during training. The framework includes a mechanism to preserve fine details, ensuring that important high-frequency elements are not mistakenly removed. This targeted cleanup is supported by a monocular depth-based loss function that helps improve the overall geometric structure of the scene. Our experiments demonstrate that TIDI-GS improves both the perceptual quality and geometric integrity of reconstructions, transforming them into robust digital assets, suitable for high-fidelity applications.
Similar Papers
StableGS: A Floater-Free Framework for 3D Gaussian Splatting
CV and Pattern Recognition
Fixes floating objects in 3D pictures.
Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting
CV and Pattern Recognition
Fixes weird floating bits in 3D pictures.
RobustSplat++: Decoupling Densification, Dynamics, and Illumination for In-the-Wild 3DGS
CV and Pattern Recognition
Makes 3D pictures ignore moving things and changing light.