ReflexDiffusion: Reflection-Enhanced Trajectory Planning for High-lateral-acceleration Scenarios in Autonomous Driving
By: Xuemei Yao , Xiao Yang , Jianbin Sun and more
Generating safe and reliable trajectories for autonomous vehicles in long-tail scenarios remains a significant challenge, particularly for high-lateral-acceleration maneuvers such as sharp turns, which represent critical safety situations. Existing trajectory planners exhibit systematic failures in these scenarios due to data imbalance. This results in insufficient modelling of vehicle dynamics, road geometry, and environmental constraints in high-risk situations, leading to suboptimal or unsafe trajectory prediction when vehicles operate near their physical limits. In this paper, we introduce ReflexDiffusion, a novel inference-stage framework that enhances diffusion-based trajectory planners through reflective adjustment. Our method introduces a gradient-based adjustment mechanism during the iterative denoising process: after each standard trajectory update, we compute the gradient between the conditional and unconditional noise predictions to explicitly amplify critical conditioning signals, including road curvature and lateral vehicle dynamics. This amplification enforces strict adherence to physical constraints, particularly improving stability during high-lateral-acceleration maneuvers where precise vehicle-road interaction is paramount. Evaluated on the nuPlan Test14-hard benchmark, ReflexDiffusion achieves a 14.1% improvement in driving score for high-lateral-acceleration scenarios over the state-of-the-art (SOTA) methods. This demonstrates that inference-time trajectory optimization can effectively compensate for training data sparsity by dynamically reinforcing safety-critical constraints near handling limits. The framework's architecture-agnostic design enables direct deployment to existing diffusion-based planners, offering a practical solution for improving autonomous vehicle safety in challenging driving conditions.
Similar Papers
DiffRefiner: Coarse to Fine Trajectory Planning via Diffusion Refinement with Semantic Interaction for End to End Autonomous Driving
CV and Pattern Recognition
Helps self-driving cars predict paths better.
Discrete Diffusion for Reflective Vision-Language-Action Models in Autonomous Driving
Robotics
Teaches cars to drive safely by thinking.
Rapid and Safe Trajectory Planning over Diverse Scenes through Diffusion Composition
Robotics
Helps robots move safely and fast.