Score: 2

SoK: Enhancing Cryptographic Collaborative Learning with Differential Privacy

Published: January 14, 2026 | arXiv ID: 2601.09460v1

By: Francesco Capano, Jonas Böhler, Benjamin Weggenmann

BigTech Affiliations: SAP

Potential Business Impact:

Keeps private data safe during computer learning.

Business Areas:
Cloud Security Information Technology, Privacy and Security

In collaborative learning (CL), multiple parties jointly train a machine learning model on their private datasets. However, data can not be shared directly due to privacy concerns. To ensure input confidentiality, cryptographic techniques, e.g., multi-party computation (MPC), enable training on encrypted data. Yet, even securely trained models are vulnerable to inference attacks aiming to extract memorized data from model outputs. To ensure output privacy and mitigate inference attacks, differential privacy (DP) injects calibrated noise during training. While cryptography and DP offer complementary guarantees, combining them efficiently for cryptographic and differentially private CL (CPCL) is challenging. Cryptography incurs performance overheads, while DP degrades accuracy, creating a privacy-accuracy-performance trade-off that needs careful design considerations. This work systematizes the CPCL landscape. We introduce a unified framework that generalizes common phases across CPCL paradigms, and identify secure noise sampling as the foundational phase to achieve CPCL. We analyze trade-offs of different secure noise sampling techniques, noise types, and DP mechanisms discussing their implementation challenges and evaluating their accuracy and cryptographic overhead across CPCL paradigms. Additionally, we implement identified secure noise sampling options in MPC and evaluate their computation and communication costs in WAN and LAN. Finally, we propose future research directions based on identified key observations, gaps and possible enhancements in the literature.

Country of Origin
🇩🇪 Germany

Repos / Data Links

Page Count
28 pages

Category
Computer Science:
Cryptography and Security