Score: 0

Explicating Tacit Regulatory Knowledge from LLMs to Auto-Formalize Requirements for Compliance Test Case Generation

Published: January 14, 2026 | arXiv ID: 2601.09762v1

By: Zhiyi Xue, Xiaohong Chen, Min Zhang

Compliance testing in highly regulated domains is crucial but largely manual, requiring domain experts to translate complex regulations into executable test cases. While large language models (LLMs) show promise for automation, their susceptibility to hallucinations limits reliable application. Existing hybrid approaches mitigate this issue by constraining LLMs with formal models, but still rely on costly manual modeling. To solve this problem, this paper proposes RAFT, a framework for requirements auto-formalization and compliance test generation via explicating tacit regulatory knowledge from multiple LLMs. RAFT employs an Adaptive Purification-Aggregation strategy to explicate tacit regulatory knowledge from multiple LLMs and integrate it into three artifacts: a domain meta-model, a formal requirements representation, and testability constraints. These artifacts are then dynamically injected into prompts to guide high-precision requirement formalization and automated test generation. Experiments across financial, automotive, and power domains show that RAFT achieves expert-level performance, substantially outperforms state-of-the-art (SOTA) methods while reducing overall generation and review time.

Category
Computer Science:
Software Engineering