Score: 0

CC-OR-Net: A Unified Framework for LTV Prediction through Structural Decoupling

Published: January 15, 2026 | arXiv ID: 2601.10176v1

By: Mingyu Zhao , Haoran Bai , Yu Tian and more

Customer Lifetime Value (LTV) prediction, a central problem in modern marketing, is characterized by a unique zero-inflated and long-tail data distribution. This distribution presents two fundamental challenges: (1) the vast majority of low-to-medium value users numerically overwhelm the small but critically important segment of high-value "whale" users, and (2) significant value heterogeneity exists even within the low-to-medium value user base. Common approaches either rely on rigid statistical assumptions or attempt to decouple ranking and regression using ordered buckets; however, they often enforce ordinality through loss-based constraints rather than inherent architectural design, failing to balance global accuracy with high-value precision. To address this gap, we propose \textbf{C}onditional \textbf{C}ascaded \textbf{O}rdinal-\textbf{R}esidual Networks \textbf{(CC-OR-Net)}, a novel unified framework that achieves a more robust decoupling through \textbf{structural decomposition}, where ranking is architecturally guaranteed. CC-OR-Net integrates three specialized components: a \textit{structural ordinal decomposition module} for robust ranking, an \textit{intra-bucket residual module} for fine-grained regression, and a \textit{targeted high-value augmentation module} for precision on top-tier users. Evaluated on real-world datasets with over 300M users, CC-OR-Net achieves a superior trade-off across all key business metrics, outperforming state-of-the-art methods in creating a holistic and commercially valuable LTV prediction solution.

Category
Computer Science:
Machine Learning (CS)