Score: 0

CROCS: A Two-Stage Clustering Framework for Behaviour-Centric Consumer Segmentation with Smart Meter Data

Published: January 15, 2026 | arXiv ID: 2601.10494v1

By: Luke W. Yerbury , Ricardo J. G. B. Campello , G. C. Livingston and more

Potential Business Impact:

Helps power companies understand how people use electricity.

Business Areas:
Smart Cities Real Estate

With grid operators confronting rising uncertainty from renewable integration and a broader push toward electrification, Demand-Side Management (DSM) -- particularly Demand Response (DR) -- has attracted significant attention as a cost-effective mechanism for balancing modern electricity systems. Unprecedented volumes of consumption data from a continuing global deployment of smart meters enable consumer segmentation based on real usage behaviours, promising to inform the design of more effective DSM and DR programs. However, existing clustering-based segmentation methods insufficiently reflect the behavioural diversity of consumers, often relying on rigid temporal alignment, and faltering in the presence of anomalies, missing data, or large-scale deployments. To address these challenges, we propose a novel two-stage clustering framework -- Clustered Representations Optimising Consumer Segmentation (CROCS). In the first stage, each consumer's daily load profiles are clustered independently to form a Representative Load Set (RLS), providing a compact summary of their typical diurnal consumption behaviours. In the second stage, consumers are clustered using the Weighted Sum of Minimum Distances (WSMD), a novel set-to-set measure that compares RLSs by accounting for both the prevalence and similarity of those behaviours. Finally, community detection on the WSMD-induced graph reveals higher-order prototypes that embody the shared diurnal behaviours defining consumer groups, enhancing the interpretability of the resulting clusters. Extensive experiments on both synthetic and real Australian smart meter datasets demonstrate that CROCS captures intra-consumer variability, uncovers both synchronous and asynchronous behavioural similarities, and remains robust to anomalies and missing data, while scaling efficiently through natural parallelisation. These results...

Page Count
37 pages

Category
Statistics:
Machine Learning (Stat)