Score: 0

Rewriting Systems on Arbitrary Monoids

Published: January 15, 2026 | arXiv ID: 2601.10564v1

By: Eduardo Magalhães

In this paper, we introduce monoidal rewriting systems (MRS), an abstraction of string rewriting in which reductions are defined over an arbitrary ambient monoid rather than a free monoid of words. This shift is partly motivated by logic: the class of free monoids is not first-order axiomatizable, so "working in the free setting" cannot be treated internally when applying first-order methods to rewriting presentations. To analyze these systems categorically, we define $\mathbf{NCRS_2}$ as the 2-category of Noetherian Confluent MRS. We then prove the existence of a canonical biadjunction between $\mathbf{NCRS_2}$ and $\mathbf{Mon}$. Finally, we classify all Noetherian Confluent MRS that present a given fixed monoid. For this, we introduce Generalized Elementary Tietze Transformations (GETTs) and prove that any two presentations of a monoid are connected by a (possibly infinite) sequence of these transformations, yielding a complete characterization of generating systems up to GETT-equivalence.

Category
Computer Science:
Formal Languages and Automata Theory