ProbFM: Probabilistic Time Series Foundation Model with Uncertainty Decomposition
By: Arundeep Chinta, Lucas Vinh Tran, Jay Katukuri
Time Series Foundation Models (TSFMs) have emerged as a promising approach for zero-shot financial forecasting, demonstrating strong transferability and data efficiency gains. However, their adoption in financial applications is hindered by fundamental limitations in uncertainty quantification: current approaches either rely on restrictive distributional assumptions, conflate different sources of uncertainty, or lack principled calibration mechanisms. While recent TSFMs employ sophisticated techniques such as mixture models, Student's t-distributions, or conformal prediction, they fail to address the core challenge of providing theoretically-grounded uncertainty decomposition. For the very first time, we present a novel transformer-based probabilistic framework, ProbFM (probabilistic foundation model), that leverages Deep Evidential Regression (DER) to provide principled uncertainty quantification with explicit epistemic-aleatoric decomposition. Unlike existing approaches that pre-specify distributional forms or require sampling-based inference, ProbFM learns optimal uncertainty representations through higher-order evidence learning while maintaining single-pass computational efficiency. To rigorously evaluate the core DER uncertainty quantification approach independent of architectural complexity, we conduct an extensive controlled comparison study using a consistent LSTM architecture across five probabilistic methods: DER, Gaussian NLL, Student's-t NLL, Quantile Loss, and Conformal Prediction. Evaluation on cryptocurrency return forecasting demonstrates that DER maintains competitive forecasting accuracy while providing explicit epistemic-aleatoric uncertainty decomposition. This work establishes both an extensible framework for principled uncertainty quantification in foundation models and empirical evidence for DER's effectiveness in financial applications.
Similar Papers
Time Series Foundation Models for Multivariate Financial Time Series Forecasting
General Finance
Helps predict money changes with less data.
Re(Visiting) Time Series Foundation Models in Finance
Computational Finance
Teaches computers to predict stock prices better.
Foundation Model Forecasts: Form and Function
Machine Learning (CS)
Makes weather forecasts useful for planning trips.