Score: 0

ARC Prize 2025: Technical Report

Published: January 15, 2026 | arXiv ID: 2601.10904v1

By: François Chollet , Mike Knoop , Gregory Kamradt and more

Potential Business Impact:

AI learns to solve new puzzles by trying and fixing.

Business Areas:
Artificial Intelligence Artificial Intelligence, Data and Analytics, Science and Engineering, Software

The ARC-AGI benchmark series serves as a critical measure of few-shot generalization on novel tasks, a core aspect of intelligence. The ARC Prize 2025 global competition targeted the newly released ARC-AGI-2 dataset, which features greater task complexity compared to its predecessor. The Kaggle competition attracted 1,455 teams and 15,154 entries, with the top score reaching 24% on the ARC-AGI-2 private evaluation set. Paper submissions nearly doubled year-over-year to 90 entries, reflecting the growing research interest in fluid intelligence and abstract reasoning. The defining theme of 2025 is the emergence of the refinement loop -- a per-task iterative program optimization loop guided by a feedback signal. Refinement loops come in a variety of forms, in particular evolutionary program synthesis approaches and application-layer refinements to commercial AI systems. Such refinement loops are also possible in weight space, as evidenced by zero-pretraining deep learning methods which are now achieving competitive performance with remarkably small networks (7M parameters). In parallel, four frontier AI labs (Anthropic, Google DeepMind, OpenAI, and xAI) reported ARC-AGI performance in public model cards in 2025, establishing ARC-AGI as an industry standard benchmark for AI reasoning. However, our analysis indicates that current frontier AI reasoning performance remains fundamentally constrained to knowledge coverage, giving rise to new forms of benchmark contamination. In this paper, we survey the top-performing methods, examine the role of refinement loops in AGI progress, discuss knowledge-dependent overfitting, and preview ARC-AGI-3, which introduces interactive reasoning challenges that require exploration, planning, memory, goal acquisition, and alignment capabilities.

Page Count
13 pages

Category
Computer Science:
Artificial Intelligence