Score: 0

Low-Rank Key Value Attention

Published: January 16, 2026 | arXiv ID: 2601.11471v1

By: James O'Neill , Robert Clancy , Mariia Matskevichus and more

Potential Business Impact:

Makes AI learn faster, using less computer power.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Transformer pretraining is increasingly constrained by memory and compute requirements, with the key-value (KV) cache emerging as a dominant bottleneck during training and autoregressive decoding. We propose \textit{low-rank KV adaptation} (LRKV), a simple modification of multi-head attention that reduces KV cache memory by exploiting redundancy across attention heads while preserving full token-level resolution. Each layer uses a shared full-rank KV projection augmented with low-rank, head-specific residuals, yielding a continuous trade-off between complete sharing and fully independent attention. LRKV is a drop-in replacement for standard multi-head attention and directly subsumes query-sharing approaches such as multi-query and grouped-query attention, while remaining distinct from latent-compression methods such as multi-latent attention (MLA). Across large-scale pretraining experiments, LRKV consistently achieves faster loss reduction, lower validation perplexity, and stronger downstream task performance than standard attention, MQA/GQA, and MLA. At the 2.5B scale, LRKV outperforms standard attention while using roughly half the KV cache, and reaches equivalent model quality with up to \textbf{20-25\% less training compute} when measured in cumulative FLOPs. To explain these gains, we analyze attention head structure in operator space and show that LRKV preserves nearly all functional head diversity relative to standard attention, whereas more aggressive KV-sharing mechanisms rely on compensatory query specialization. Together, these results establish LRKV as a practical and effective attention mechanism for scaling Transformer pretraining under memory- and compute-constrained regimes.

Page Count
29 pages

Category
Computer Science:
Machine Learning (CS)