Score: 0

Extractive summarization on a CMOS Ising machine

Published: January 16, 2026 | arXiv ID: 2601.11491v1

By: Ziqing Zeng , Abhimanyu Kumar , Chris H. Kim and more

Potential Business Impact:

Makes phones summarize text using less power.

Business Areas:
Intelligent Systems Artificial Intelligence, Data and Analytics, Science and Engineering

Extractive summarization (ES) aims to generate a concise summary by selecting a subset of sentences from a document while maximizing relevance and minimizing redundancy. Although modern ES systems achieve high accuracy using powerful neural models, their deployment typically relies on CPU or GPU infrastructures that are energy-intensive and poorly suited for real-time inference in resource-constrained environments. In this work, we explore the feasibility of implementing McDonald-style extractive summarization on a low-power CMOS coupled oscillator-based Ising machine (COBI) that supports integer-valued, all-to-all spin couplings. We first propose a hardware-aware Ising formulation that reduces the scale imbalance between local fields and coupling terms, thereby improving robustness to coefficient quantization: this method can be applied to any problem formulation that requires k of n variables to be chosen. We then develop a complete ES pipeline including (i) stochastic rounding and iterative refinement to compensate for precision loss, and (ii) a decomposition strategy that partitions a large ES problem into smaller Ising subproblems that can be efficiently solved on COBI and later combined. Experimental results on the CNN/DailyMail dataset show that our pipeline can produce high-quality summaries using only integer-coupled Ising hardware with limited precision. COBI achieves 3-4.5x runtime speedups compared to a brute-force method, which is comparable to software Tabu search, and two to three orders of magnitude reductions in energy, while maintaining competitive summary quality. These results highlight the potential of deploying CMOS Ising solvers for real-time, low-energy text summarization on edge devices.

Page Count
11 pages

Category
Computer Science:
Machine Learning (CS)