Score: 1

Auto-Regressive Masked Diffusion Models

Published: January 23, 2026 | arXiv ID: 2601.16971v1

By: Mahdi Karami, Ali Ghodsi

Potential Business Impact:

Makes computers write better and faster.

Business Areas:
Augmented Reality Hardware, Software

Masked diffusion models (MDMs) have emerged as a promising approach for language modeling, yet they face a performance gap compared to autoregressive models (ARMs) and require more training iterations. In this work, we present the Auto-Regressive Masked Diffusion (ARMD) model, an architecture designed to close this gap by unifying the training efficiency of autoregressive models with the parallel generation capabilities of diffusion-based models. Our key insight is to reframe the masked diffusion process as a block-wise causal model. This perspective allows us to design a strictly causal, permutation-equivariant architecture that computes all conditional probabilities across multiple denoising steps in a single, parallel forward pass. The resulting architecture supports efficient, autoregressive-style decoding and a progressive permutation training scheme, allowing the model to learn both canonical left-to-right and random token orderings. Leveraging this flexibility, we introduce a novel strided parallel generation strategy that accelerates inference by generating tokens in parallel streams while maintaining global coherence. Empirical results demonstrate that ARMD achieves state-of-the-art performance on standard language modeling benchmarks, outperforming established diffusion baselines while requiring significantly fewer training steps. Furthermore, it establishes a new benchmark for parallel text generation, effectively bridging the performance gap between parallel and sequential decoding.

Page Count
27 pages

Category
Computer Science:
Machine Learning (CS)