Score: 0

CoT-Seg: Rethinking Segmentation with Chain-of-Thought Reasoning and Self-Correction

Published: January 24, 2026 | arXiv ID: 2601.17420v1

By: Shiu-hong Kao , Chak Ho Huang , Huaiqian Liu and more

Potential Business Impact:

Helps computers understand pictures better, even tricky ones.

Business Areas:
Semantic Search Internet Services

Existing works of reasoning segmentation often fall short in complex cases, particularly when addressing complicated queries and out-of-domain images. Inspired by the chain-of-thought reasoning, where harder problems require longer thinking steps/time, this paper aims to explore a system that can think step-by-step, look up information if needed, generate results, self-evaluate its own results, and refine the results, in the same way humans approach harder questions. We introduce CoT-Seg, a training-free framework that rethinks reasoning segmentation by combining chain-of-thought reasoning with self-correction. Instead of fine-tuning, CoT-Seg leverages the inherent reasoning ability of pre-trained MLLMs (GPT-4o) to decompose queries into meta-instructions, extract fine-grained semantics from images, and identify target objects even under implicit or complex prompts. Moreover, CoT-Seg incorporates a self-correction stage: the model evaluates its own segmentation against the original query and reasoning trace, identifies mismatches, and iteratively refines the mask. This tight integration of reasoning and correction significantly improves reliability and robustness, especially in ambiguous or error-prone cases. Furthermore, our CoT-Seg framework allows easy incorporation of retrieval-augmented reasoning, enabling the system to access external knowledge when the input lacks sufficient information. To showcase CoT-Seg's ability to handle very challenging cases ,we introduce a new dataset ReasonSeg-Hard. Our results highlight that combining chain-of-thought reasoning, self-correction, offers a powerful paradigm for vision-language integration driven segmentation.

Page Count
17 pages

Category
Computer Science:
CV and Pattern Recognition