Score: 0

Guiding the Recommender: Information-Aware Auto-Bidding for Content Promotion

Published: January 28, 2026 | arXiv ID: 2601.20422v1

By: Yumou Liu , Zhenzhe Zheng , Jiang Rong and more

Potential Business Impact:

Improves online ads to help good content get seen.

Business Areas:
Personalization Commerce and Shopping

Modern content platforms offer paid promotion to mitigate cold start by allocating exposure via auctions. Our empirical analysis reveals a counterintuitive flaw in this paradigm: while promotion rescues low-to-medium quality content, it can harm high-quality content by forcing exposure to suboptimal audiences, polluting engagement signals and downgrading future recommendation. We recast content promotion as a dual-objective optimization that balances short-term value acquisition with long-term model improvement. To make this tractable at bid time in content promotion, we introduce a decomposable surrogate objective, gradient coverage, and establish its formal connection to Fisher Information and optimal experimental design. We design a two-stage auto-bidding algorithm based on Lagrange duality that dynamically paces budget through a shadow price and optimizes impression-level bids using per-impression marginal utilities. To address missing labels at bid time, we propose a confidence-gated gradient heuristic, paired with a zeroth-order variant for black-box models that reliably estimates learning signals in real time. We provide theoretical guarantees, proving monotone submodularity of the composite objective, sublinear regret in online auction, and budget feasibility. Extensive offline experiments on synthetic and real-world datasets validate the framework: it outperforms baselines, achieves superior final AUC/LogLoss, adheres closely to budget targets, and remains effective when gradients are approximated zeroth-order. These results show that strategic, information-aware promotion can improve long-term model performance and organic outcomes beyond naive impression-maximization strategies.

Page Count
36 pages

Category
Computer Science:
CS and Game Theory